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In this paper, we present a novel optimization-based method for the combination of cluster

ensembles. The information among the ensemble is formulated in 0-1 bit strings. The suggested

model de¯nes a constrained nonlinear objective function, called fuzzy string objective function
(FSOF), which maximizes the agreement between the ensemble members and minimizes the

disagreement simultaneously. Despite the crisp primary partitions, the suggested model

employs fuzzy logic in the mentioned objective function. Each row in a candidate solution of the

model includes membership degrees indicating how much data point belongs to each cluster.
The de¯ned nonlinear model can be solved by every nonlinear optimizer; however; we used

genetic algorithm to solve it. Accordingly, three suitable crossover and mutation operators

satisfying the constraints of the problem are devised. The proposed crossover operators
exchange information between two clusters. They use a novel relabeling method to ¯nd corre-

sponding clusters between two partitions. The algorithm is applied on multiple standard

datasets. The obtained results show that the modi¯ed genetic algorithm operators are desirable

in exploration and exploitation of the big search space.

Keywords : Fuzzy cluster ensemble; nonlinear objective function; genetic algorithm; optimization.

1. Introduction

Data clustering is an essential and also di±cult non-polynomial-hard (NP-hard)

problem. The objective of clustering is to group a set of unlabeled objects into

homogeneous groups or clusters (Jain et al., 1999).1,16 Each clustering algorithm

optimizes its internal objective function which causes to ¯nd clusters with speci¯c
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shapes. For example, k-means attempts to minimize sum of square errors (distances)

between the data points and their corresponding cluster centers. Because minimizing

the sum of square errors will result in globular clusters, k-means is a proper algorithm

for datasets with spherical shapes. Generally, it will be suitable to apply each

algorithm only on a special kind of dataset in which data distribution is ¯tted to its

objective function. In other words, because there is no prior knowledge about cluster

shapes, it is not easy to choose a speci¯c clustering method for each dataset.21

Knowing this result, one can immediately think about a combination of various

clustering algorithms with di®erent objectives instead of using a single one, hence,

the appearance in a cluster ensemble context.

Cluster ensemble methods attempt to ¯nd more accurate, stable, and robust

clustering solutions by fusing information from several primary data partitionings.

Because di®erent clustering algorithms look into di®erent points of view over data,

they can generate diverse partitionings of the same data. By combining the parti-

tionings obtained from di®erent base algorithms and by taking the strengths of each,

it is possible to reach an e±cient consensus partitioning, even when the clusters are

not dense and well separated.11

Generally, there are two main steps in cluster ensemble.1,4 In the ¯rst step, a

number of base clustering algorithm are employed to provide a set of weak parti-

tionings, which is called an ensemble. Every primary partitioning reveals an aspect

about the data. Therefore, the primary results in the ensemble should be as diverse

as possible to extract more information about the underlying patterns in the data.

The information accumulated in the ensemble is combined in the next step of the

cluster ensemble. In this paper, we are interested in the combination of spurious

clustering results in order to produce a better consensus partition. The objective

function used in the paper is inspired from the immature formulation introduced by

Singh et al.24 It maximizes the agreement between the ensemble members and also

minimizes the disagreement simultaneously. Improving their nonlinear binary goal

function, we propose a constrained nonlinear fuzzy objective function. The good

exploration power of genetic algorithm in big search spaces persuaded us to use it for

solving the model. However, without losing the generality, one can use any other

optimizer to solve the model. There are two main schools of thought dealing with

genetic algorithm solver. To maximize the advantages of the genetic algorithm, the

suitable crossover and mutation functions should be de¯ned.

As a summary, the main contributions of this work are the following:

(1) The proposed algorithm uses a state-of-the-art encoding for the cluster en-

semble problem, i.e. the string representation which will be introduced in Sec. 3.

(2) The algorithm introduces a fuzzy objective function which yields to e®ectively

optimizing the ¯nal partition variables.

(3) The algorithm employs a modi¯ed mutation function which strengthens the

exploitation power of the genetic algorithm, especially on the last generations of

genetic algorithm when the chromosomes converge structurally.

H. Alizadeh, B. Minaei-Bidgoli & H. Parvin

1350005-2



(4) Furthermore, the e®ect of using each proposed crossover operator on the speed

of algorithm convergence is empirically studied.

Usually, the objective functions de¯ned in the other optimization formulation of

the both single and ensemble problems try to optimize only one aspect of the original

clustering de¯nition. Some of them increase the inter-cluster distances, whereas

others attempt to decrease the intra-cluster variances. For example, the formulations

to optimize the minimum sum-of-squares clustering (MSSC)27 or structural-entropy-

minimization-based clustering12 only minimize their objective values. In the case of

ensemble formulation, the EXAMCE procedure also tries to optimize the MSSC

criterion during its two-level optimization process.6 Despite the previous problem

formulations and objective functions, the ¯rst above-mentioned point follows that

string representation gives the ability of working on both maximizing assents out of

ensemble members and minimizing dissents out of them, simultaneously.

We empirically compare the accuracy of the consensus partitioning with the

accuracies of the best and the mean of the individual members in the ensemble.

The accuracy is computed based on the true ground labels. Furthermore, we present

the accuracy of the consensus partitioning obtained via evidence accumulation clus-

tering (EAC).9 The accuracies of the partitionings obtained via some basic clustering

algorithms, namely, fuzzy c-means clustering (FCM) algorithm and single linkage

hierarchical clustering algorithm, are also presented to support our evaluation pro-

cess more. To show how the quality of a partitioning is related to the ¯tness function

de¯ned for the optimization problem, the paper also provides the readers with a

¯tness function corresponding to any reported accuracy. The admissible experi-

mental results con¯rm our idea about employing fuzziness and choosing the genetic

algorithm as an optimizer. This will be discussed in more detail in the next sections.

The rest of the paper is organized as follows: Section 2 reviews the recent related

works in cluster ensemble problem. Section 3 presents the problem de¯nitions. Sec-

tion 4 introduces fuzzy string cluster ensemble optimized by genetic algorithm

(FSCEOGA) as the problem solver. The modi¯ed operators of genetic algorithm are

also introduced in Sec. 3 for FSCEOGA. In Sec. 5, we present a large number of

experimental results performed on many diverse datasets and compare them directly

with previously well-known proposed methods. Finally, we conclude the paper in

Sec. 6 with a list of directions for future research.

2. Literature Review

In this section, we review some of the state-of-the-art studies in the ¯elds of cluster

ensemble approaches and genetic-algorithm-based cluster ensemble.

2.1. New approaches in cluster ensemble

There are two new trends in cluster ensemble approaches: cluster ensemble selection

and cluster ensemble optimization.
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In the ¯rst approach, the idea is to select a subset of base clusterings so that the

consensus partition derived from the subset is better than the full ensemble. In the

most previous studies, all partitionings and their clusters in the ensemble have equal

weight. This means that every ensemble member has the same value in the ¯nal

decision.9,25 As a general principle, it seems that weighing the better ideas e®ectuates

¯nal decisions of the ensembles. Therefore, Fern and Lin8 have utilized the nor-

malized mutual information (NMI) criterion, ¯rst de¯ned by Strehl and Ghosh25 and

further completed by Fred and Jain,9 in order to evaluate the primary partitionings.

Then, they have shown by comprehensive experimental results that selecting a

subset of partitionings can yield better results than that of whole partitionings in

the full ensemble. Moreover, Azimi and Fern5 have shown that choosing better

primary results based on NMI will not always yield better ¯nal results. They have

also suggested an adaptive approach to choose a special subset of base results for

each kind of datasets. Furthermore, showing the drawbacks of NMI, Alizadeh et al.2

have introduced a new benchmark to evaluate the individual clusters called the

Alizadeh�Parvin�Moshki�Minaei (APMM) criterion. They have extended the idea

of cluster ensemble selection from the level of partitions to individual clusters.

Considering the other point of view of the cluster ensemble selection, Parvin et al.19

have proposed a new method for clustering data so as to assign a weight vector to the

feature space of the data. In this method, calculating the data variance through every

feature, the feature in which variance is higher participates in combination with

greater weight. They have also proved the convergence of their suggested algorithm.

In the second approach, the consensus partition is obtained by the solution of an

optimization problem. The goal of the optimization problem is ¯nding the optimal

partition (by optimizing an objective function) with respect to the cluster ensemble.

A common feature in most of the previous approaches is to rely on modeling an

instance of the cluster ensemble problem as a graph comprising n (where n is the

number of dataset) nodes and some edges. An edge indicates some measure of

similarity calculated from the ensemble between two nodes. The graph representa-

tion of an ensemble, regardless of the sophistication of the algorithm to work on, will

likely cause sub-optimal results. More recent researches in the cluster ensemble ¯eld

show a tendency to formulate the problem as an optimization task and then solving it

using mathematical solvers (or even intelligent optimization solvers).6,10,20,24 A brief

review over some of these methods is available in Ref. 26.

Christou6 has proposed an optimization-based formulation for the combination of

cluster ensembles for the class of problems with intra-cluster criteria, such as MSSC.

He modi¯ed the set partitioning formulation of the original clustering problem7

to reach a simple and e±cient cluster ensemble algorithm. He has also con¯rmed

that under general assumptions and relaxations of the original formulation, it is

guaranteed to ¯nd better solutions than the ones in the ensemble. Singh et al.24 have

provided another optimization formulation for the formation of the ¯nal clusters so

as to maximize the agreement and minimize the disagreement of the consensus result

with respect to the ensemble members simultaneously. They have also proposed

H. Alizadeh, B. Minaei-Bidgoli & H. Parvin

1350005-4



a new encoding for ensemble members named A-string representation. In the next

step, they relaxed their initial formulation of the nonlinear binary program to a

0-1 semide¯nite programming (SDP) problem. This problem is then further relaxed

to give a ¯nal SDP. After that, they have used a rounding scheme based on a winner-

take-all approach to produce a ¯nal feasible clustering. Their results show that their

suggested idea performed better than the base clustering solutions used in terms of

classifying error for most of the test cases. Despite most cluster ensemble techniques

using a large set of weak primary results, their experimental results employed only a

few, but accurate, base clusterings.

2.2. Genetic algorithm-based cluster ensemble

The genetic algorithm has shown its versatility in solving any optimization problem.

Wan et al.28 have argued the transformation of speed construction and hypocenters

position in the Beijing�Tianjin�Tangshan�Zhangjiakou area into a genetic algo-

rithm optimization problem. They then used a genetic algorithm to solve the

problem. A camera vision system concentrating on 3D reconstruction has been in-

troduced by Zhang et al.,33 who have modi¯ed genetic algorithm to approximate the

system parameters. A genetic algorithm model is developed and used for optimizing

their objective function. Louati et al.13 have used genetic algorithm as the optimizer

for the water allocation to demand centers and the salinity level of the water supply

to end users. They combined the two objective functions into one and solved it using

a genetic algorithm. Xu and Cai30 have used genetic algorithm to solve the problem

of how to determine expert weights in multiple attribute group decision making.

They have proposed a general nonlinear optimization model based on deviation

function. Then they have employed a genetic algorithm so as to optimize their

nonlinear optimization model and discover the best weights.

The genetic-algorithm-based cluster ensemble methods use its search capability to

obtain a robust consensus clustering. Generally, the initial population is generated

with the partitions in the cluster ensemble. Moreover, a ¯tness function is de¯ned

to determine which chromosomes (partitions) are better. Among these methods,

we should advert to Yoon et al.31,32 They have employed genetic algorithm as a

consensus function for the cluster ensemble problem. Each partition in their method

is encoded by a chromosome. With each pair of partitions obtained from the objects,

an ordered pair is created. In this algorithm, the ¯tness function compares the

amount of overlaps between the partitions in each chromosome. Another cluster

ensemble method based on genetic algorithms is the method proposed by Luo

et al.14 This method uses genetic algorithm to minimize an information theoretical

criterion. It also uses the Hungarian method to solve the label correspondence

problem. Furthermore, Analoui and Sadighian3 have proposed a probabilistic model

by using a ¯nite mixture of multinomial distributions. The consensus partition is

found as a solution to the corresponding maximum likelihood problem using a genetic

algorithm.
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3. Problem De¯nition

String representation, ¯rst introduced by Singh et al.,24 is one of the recent

approaches to accumulate information from an ensemble. Each data point is ¯gured

as a 3D matrix determining the base algorithms' point of view.

De¯nition 1 (Cluster Ensemble Problem). Given a dataset D ¼ ðx1;

x2; . . . ;xnÞ, where xi is the ith data point in a d-dimensional feature space, a set of

clustering solutions E ¼ ðC1;C2; . . . ;CmÞ obtained from m di®erent clustering

algorithms or only one algorithm by perturbing the input dataset or modifying the

algorithm parameters, is called an ensemble. Each solution, Cj ¼ ðC1j;C2j; . . . ;CkjÞ,
is the partitioning of the data into k clusters where Cij denotes the cluster i from the

jth partitioning. The Cluster Ensemble problem ¯nds the optimum partitioning

which partitions D into k clusters that maximize the shared information in E.

De¯nition 2 (String Representation of the Ensemble). Given an ensemble

E ¼ ðC1;C2; . . . ;CmÞ, the string representation of the ensemble is a 3D space

Að1 . . .n� 1 . . . k� 1 . . .mÞ, where each element Aðl; i; jÞ denotes the assignment of

xl to Cij in E. In other words, we can de¯ne the A ¼ ½Aðl; i; jÞ� as the following:

Aðl; i; jÞ ¼ 1 if xl is assigned to Cij

0 otherwise:

�
ð1Þ

From Eq. (1), it can immediately be understood that each 2D matrix Al stands

for data sample xl. In fact, the feature vector is here changed to a matrix. Put

it di®erently, the representation of a solitary data point changes from an original

Euclidean 1D space in D to another 1D ensemble integer space of primary results in

E and then to a 2D binary matrix in A.

De¯nition 3 (Final Fuzzy Partition). The ¯nal partition (cluster ensemble

solution) is de¯ned to be a fuzzy partition comprising a set of fuzzy clusters

X ¼ ðC �
1 ;C

�
2 ; . . . ;C

�
kÞ. This fuzzy variable is a 2D matrix which determines the

membership amounts of data points to the clusters. Put di®erently, we can de¯ne

Xð1 . . .n� 1 . . . kÞ as the following:

X ¼ ½Xðl; pÞ�; where Xðl; pÞ is the membershhip of xl to C �
p : ð2Þ

The aim of our optimization process is to ¯nd X optimally based on the similarity

measure which is discussed in De¯nition 4. According to the de¯nition of the matrix

X, each row determines the membership values of a data point to the clusters.

Therefore, we de¯ne a constraint to ensure that sum of memberships of each sample

to all clusters is equal to one. It means the constraint:
Pk

p¼1 Xðl; pÞ ¼ 1; 8 l 2
f1; . . . ;ng. Furthermore, to guarantee that no cluster will remain empty, another

constraint is required:
Pn

l¼1 Xðl; pÞ � 1 8 p 2 f1; . . . ; kg.
De¯nition 4 (Fuzzy Cluster Centers). Given the A-strings and the member-

ship matrix X, a 3D variable Sð1 . . . k� 1 . . .m� 1 . . . kÞ is de¯ned, which holds the
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similarity of primary clusters to the clusters in ¯nal partition X. More precisely,

each entry of the matrix S is de¯ned: Sði; j; pÞ ¼ similarity ðCij to C �
pÞ. We de¯ne

the similarity function as the following equation:

Sði; j; pÞ ¼
Pn

i¼1 dði; j; pÞð Þ � dði; j; pÞð Þ0:5þI=2Pk
p¼1

Pn
i¼1 dði; j; pÞð Þ � dði; j; pÞð Þ0:5þI=2

;

so that dði; j; pÞ is the Ith maximum 8 i; ð3Þ
where dði; j; pÞ is the distance between clusters Cij and C �

p ; formally dði; j; pÞ ¼
jjCij � Cp

�jj. It is computed by Eq. (4):

dði; j; pÞ ¼
X
z

jAðz; i; jÞ �Xðz; pÞj: ð4Þ

By the way of explanation, dði; j; pÞ is the distance between the ith cluster of

jth partitioning and pth cluster of the ¯nal partition. The 3Dmatrix S is a kind of fuzzy

cluster center for two reasons: First, it has the same dimension as theA strings. Second,

the number of cluster centers which is the ¯rst dimension of the matrix S is equal to k.

To calculate the similarity between clusters Cij and C �
p , ¯rst the distance is

converted to a kind of similarity by subtracting each dði; j; pÞ from sum of distances

over all clusters in the jth partition (as it is shown in Eq. (3)). Then, the obtained

similarity is normalized by dividing the sum of similarities over all clusters. This

simple normalization way causes the values to be close together. For the sake of

increasing contrast between values, we power the similarities to di®erent exponents.

The lower the similarity value, the smaller the power.

To guarantee that the sum of similarities between whole clusters existed in the

jth partition and C �
p is equal to one, it is normalized by the denominator, that is,

Xk
i¼1

Sði; j; pÞ ¼ 1 8 j 2 f1; . . . ;mg; 8 p 2 f1; . . . ; kg:

De¯nition 5 (Fuzzy String Objective Function (FSOF)). Given the A-strings,

the membership matrix X, and the fuzzy cluster centers S, variable FSOF contains

the absolute distance between the fuzzy cluster centers S and the average of

A-strings belonging to the cluster C �
p . In other words, the value returned from

the absolute operator of FSOF equation (Eq. (5)) indicates the percentage

of memberships of data points in C �
p that disagree with the greater part of

memberships in the cluster (with respect to the clustering solution provided by Cj).

Put di®erently, the FSOF optimization maximizes the agreement and minimizes

the disagreements between data points belonging to a cluster, simultaneously.

The following constraints, as discussed previously, enforce the solution to remain

feasible.

FSOF ¼
Xk
p

Xk
i

Xm
j

Sðp; i; jÞ �
Pn

l¼1 Aðl; i; jÞXðl; pÞPn
l¼1 Xðl; pÞ

����
����
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s:t:

Sði; j; pÞ ¼
Pn

i¼1 dði; j; pÞð Þ � dði; j; pÞð Þ0:5þI=2Pk
p¼1

Pn
i¼1 dði; j; pÞð Þ � dði; j; pÞð Þ0:5þI=2

;

so that dði; j; pÞ is the Ith maximum 8 i

dði; j; pÞ ¼
Xn
l¼1

jAðl; i; jÞ �Xðl; pÞj

Xk
i¼1

Sði; j; pÞ ¼ 1 8 j 2 f1; . . . ;mg; 8 p 2 f1; . . . ; kg

Xk
p¼1

Xðl; pÞ ¼ 1 8 l 2 f1; . . . ;ng

Xn
l¼1

Xðl; pÞ � 1 8 p 2 f1; . . . ; kg

0 � Xðl; pÞ � 1 8 l 2 f1; . . . ;ng; 8 p 2 f1; . . . ; kg: ð5Þ

4. Problem Solver

The proposed solver named the FSCEOGA is introduced in this section. At the

cost of repetition, the cluster ensemble is formulated as an optimization problem.

The goal of the optimization problem is to minimize the fuzzy string objective

function that implicitly yields to a partitioning in which the agreements among base

partitionings are maximized while the disagreements among them are minimized

simultaneously. To solve the proposed model, any nonlinear optimization solver can

be employed. The easy-to-understand as well as e®ective-in-exploration/optimizer

named genetic algorithm is used as problem solver in this paper.

Genetic algorithms have been used in many optimization problems as a general

search method. The algorithm is able to search the complex search spaces and

usually obtain an optimal or a near-optimal solution. The ability of the genetic

algorithm has been shown in many di®erent issues. Among them, we can point out

the utilizing genetic algorithms in classi¯cation problems, neural network training

and speech recognition systems training.15 In all these issues with an appropriate

de¯nition of genetic algorithm, it has been able to achieve the proper results in

admissible time. There are also vast researches in employing genetic algorithm for

solving the clustering problems. Genetic algorithm has been used in clustering and

classi¯cation problems successfully. Sheng and Liu22 have proposed a modi¯ed ge-

netic algorithm for data clustering problem. Some heuristic operators are considered

and used with the genetic algorithm to better solve the problem. Wang et al.29 have

proposed three algorithms based on genetic algorithm to create a classi¯er system.

Partitional clustering has been dealt with by Sheng et al.23 considering the reliability
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and e±ciency of high-quality solutions using a niching genetic k-means algorithm.

They have used the sum of squared errors as their main objective function.

The ¯rst step in solving a problem by genetic algorithm is to code it in a way that

it can be applied to genetic algorithm. In the proposed algorithm, fuzzy encoding of

matrixX (as it is de¯ned in Eq. (2)) is used as the chromosomes of genetic algorithm.

It means that each chromosome in FSCEOGA is a matrix of n� k. In our imple-

mentation, init pop() function generates a set of random feasible solutions as the

initial population and feeds it to the genetic algorithm. It includes a function named

feasible() to check the feasibility of the randomly made potential solutions. The

function feasible() checks the feasibility of its input chromosome to be sure about

satisfying the two following constraints:

Xk
p¼1

Xðl; pÞ ¼ 1 8 l 2 f1; . . . ;ng;

Xn
l¼1

Xðl; pÞ � 1 8 p 2 f1; . . . ; kg:

The three most important elements of a genetic algorithm which should be discussed

further than the others are ¯tness, crossover, and mutation functions.

4.1. Fitness function

The ¯tness function of FSCEOGA evaluates the FSOF de¯ned in Eq. (5). Given the

A-strings and the input chromosome, ¯rst, the ¯tness function calculates the fuzzy

cluster centers from Eq. (3). Then, it computes the absolute di®erence between the

fuzzy cluster centers and the average A-strings which belong to the corresponding

clusters as Eq. (5).

4.2. Crossover

The crossover function combines two input solutions in order to create an

o®spring which is inherited from the two input solutions also named its two

parents. We proposed two di®erent crossover functions named Cross Twop() and

Cross Clust(). The ¯rst one, which is a modi¯cation of the original two-

point crossover of MATLAB, selects two random integer values point 1 and point 2

between 1 and n where n is the number of genomes. Then, it splits each parent

into three parts at the points of point 1 and point 2. After that, it makes the o®spring

by copying the ¯rst and the last parts from the ¯rst parent and the middle part

from the other. The pseudo code of the ¯rst de¯ned crossover function is depicted

in Fig. 1.

To better understand how the Cross Twop() function works, see Example 1.
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Example 1. Suppose that p1 and p2 are the parents and the crossover points are

2 and 4. The function returns the following child:

p1 ¼

0:6 0:1 0:3

0:7 0:2 0:1

0:1 0:5 0:4

0:9 0 0:1

0:1 0:2 0:7

2
66666664

3
77777775

p2 ¼

a b b

d e f

g h i

j k l

m n o

2
66666664

3
77777775

point 1 ¼ 2

point 2 ¼ 4
) child ¼

0:6 0:1 0:3

0:7 0:2 0:1

g h i

j k l

0:1 0:2 0:7

2
66666664

3
77777775

The second crossover function Cross Clust() takes two parents and then produces

one child. The child inherits one cluster from the second parent while it inherits the

rest clusters from the ¯rst one. Figure 2 shows the procedure of the second suggested

crossover function.

Fig. 1. Cross Twop() function.
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To make the Cross Clust() function clear, see Example 2.

Example 2. Suppose that we have two parents p1 and p2 and the clus num ¼ 2.

The Cross Clust()crossover function is illustrated as follows:

Fig. 2. Cross Clust() function.
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In Example 2, choosing clus num ¼ 2 causes replacing the rows in p1 dedicated

to the cluster clus num ¼ 2 with the corresponding rows in ReLabeled p2. In this

example, data points in the rows indexed by 3 and 6 in p1 belong to the

second cluster. Therefore, the procedure replaces those rows (rows three and six)

from ReLabeled p2 in child which was ¯rst created as a copy of p1. If the procedure

does not lead to a feasible solution, the function will be repeated by exchanging p1

and p2. If the second attempt does not result in a feasible answer, Cross Clust will

return p1.

The function Fuzzy relablingðp1; p2Þ relabels its second fuzzy input p2 based

on its ¯rst fuzzy input p1. The ¯rst option to relabel a fuzzy partition is transforming

it to a crisp partition. Then, we apply one of the common relabeling methods on the

achieved crisp partition. One downside of this way is that we miss some information

among the fuzzy memberships because the converted crisp partition deals only with

the maximum membership. Maintaining the information, we propose a new method

for fuzzy relabeling of two fuzzy partitions.

On the other hand, the problem is ¯nding matching between fuzzy partitions.

This problem is immediately reduced to calculate the similarity between two fuzzy

clusters and, consequently, to ¯nd a match of their components. Therefore, the

¯rst step of our fuzzy relabeling method is calculating similarity between two

membership values belonging to a data point from two di®erent clusters. At

¯rst glance, the term 1� jp1ðc; iÞ � p2ðc; jÞj, where p1ðc; iÞ is the fuzzy membership

of the cth data point to ith cluster in partitioning p1, seems to be a measure

for calculating similarity (matching). We name it \simple matching." In our

opinion, however, the amount of matching should be dependent on the certainty

(membership) of them. For example, the simple matching of two components with

memberships 0.1, 0.2 is 1� j0:1� 0:2j ¼ 0:9. In a similar way, the simple matching

has the same value for inputs 0.8 and 0.9, that is, 1� j0:8� 0:9j ¼ 0:9. We believe

that membership degrees denote the certainty level of classifying a sample to

a cluster. Furthermore, low degrees only mean that the sample probably belongs to

the other clusters. Moreover, we will calculate the calculations for all other clus-

ters. As a result, it seems to be more rational that simple matching be associated

with membership degrees. We suggest Eq. (6) to calculate matching between two

fuzzy clusters.

Mði; jÞ ¼
Xn
c¼1

minðp1ðc; iÞ; p2ðc; jÞÞ � ð1� jp1ðc; iÞ � p2ðc; jÞjÞ; ð6Þ

where Mði; jÞ aims to count the similarities between membership distributions of

cluster i from p1 and cluster j from p2. Figure 3 demonstrates our relabeling

procedure. The Hungarian algorithm17 calculates the best matching between the

clusters in M.

To make our proposed relabeling function easier to understand, see Example 3.
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Example 3. Suppose that the goal is relabeling fuzzy partitioning p2 with respect to

p1 (ground truth). The Fuzzy relablingðp1; p2Þ procedure is illustrated as follows:

In Example 3, we construct the matching matrix M from Eq. (6). Then, it will be

served to the Hungarian algorithm to ¯nd the best possible matching.

4.3. Mutation

The mutation function causes the solution to jump a bit in the feasible solution.

The proposed mutation function, which is shown in Fig. 4, randomly changes the

memberships of a data point to the clusters. It seems that changing the memberships

∑
=

−−×=

Fig. 3. Fuzzy relabling() function.
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in a random selected row is a rational way of mutation. Hence, our mutation function

replaces the selected fuzzy genome to another random generated vector with the

same length. Whereas a data point may strictly belong to a solitary cluster and this

phenomenon often occurs, the suggested mutation function should generate crisp

assignments for some data points.

In Fig. 4, reproduce crisp() creates a vector of size k so that all elements are zero

except one. On the other hand, reproduce fuzzy() makes a vector of random variables

so that each variable is extracted randomly from the interval [0,1]. The summation of

the values of the mentioned variable vector should be equal to one.

5. Experimental Results

This section aims to evaluate the performance of FSCEOGA experimentally. The

proposed method has been examined on seven di®erent datasets which are varying in

number of clusters, features and examples. The results of some other clustering

algorithms are also reported on the same datasets. Six of the used datasets are from

UCI repository of machine learning.18 The last dataset is the well known and hard-for-

clustering HalfRing. Due to the high number of datasets, the experimental results can

be reliable and general. Table 1 gives information about the used standard datasets.

For all of the mentioned benchmarks, the number of clusters and real labels

are already known. The results are reported in terms of the accuracy. To calculate

the accuracy for each obtained partition the two following steps are done. First, the

Fig. 4. Mutation() function.
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Hungarian algorithm is employed for matching the partition with the true labels

of the dataset.17 After ¯nding the proper matching, the accuracy is obtained by

computing the percentage of samples which are correctly classi¯ed. The other way

to evaluate a partition is through its FSOF value. The FSOF for a partition is

calculated based on Eq. (5).

The summary of the results obtained by employing di®erent clustering algorithms

is presented in terms of accuracy in Table 2. All methods have been implemented in

MATLAB 2012. To reach any result throughout the paper, each algorithm is run

with 10 di®erent initializations, and then the averaged accuracy is reported. Like

many other cluster ensemble studies, this work employed the well known k-means

algorithm with random initialization to generate the ensemble. Moreover, sampling

70% of data is used to enforce more diversity to the ensemble. Furthermore, the

maximum number of iterations for running k-means is limited to gain weak as well as

diverse partitions. The ensemble was generated with the known k extracted from the

ground truth.

In Table 2, FSCEOGA1 stands for FSCEOGA when it uses Cross Twop() as the

crossover operator. Consequently, FSCEOGA2 stands for FSCEOGA when it uses

Cross Clust() as the crossover operator. The proposed methods are compared with

two well known single clustering methods, Single Linkage and Fuzzy C-means. To

extend the experimental evaluations, the famous EAC algorithm9 and renowned

Table 1. Characteristics of used datasets.

Class Features Samples

Halfrings 2 2 400
Iris 3 4 150

Wine 3 13 178

Ionosphere 2 34 351

SAHeart 2 9 462
Glass 6 9 214

Breast 2 9 683

Table 2. The summary of the accuracies obtained by employing di®erent clustering algorithms. The best results

obtained by di®erent methods over each data set are highlighted in bold.

Ens. Members Single Ensemble Methods

Accuracy FSCEOGA1 FSCEOGA2 Best Average SL FCM EAC HGPA MCLA CSPA SDP

Iris 93.27 93.34 94.13 84.08 68.00 96.00 93.13 70.50 89.00 92.33 89.67

Wine 68.99 68.43 71.29 67.36 42.70 68.54 66.12 60.22 71.12 69.89 69.55

Glass 50.37 46.26 51.06 47.99 36.45 50.00 46.45 40.84 46.45 39.16 47.90

Halfrings 74.65 74.92 75.13 74.39 75.75 74.50 73.67 50.00 74.00 74.38 —

Ionosphere 69.63 70.04 69.69 67.16 64.39 70.09 64.87 53.99 70.14 68.23 —

SAHeart 65.65 65.63 65.74 64.72 65.15 64.94 65.28 52.16 64.23 65.31 —

Breast 95.14 95.21 95.79 95.14 65.15 70.13 95.21 50.37 94.05 83.02 —

Average of all

datasets

73.96 73.40 74.69 71.55 59.66 70.60 72.10 54.01 72.71 70.33 —
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hyper graph based methods HGPA, MCLA and CSPA25 are added to the basket of

ensemble methods for comparison. We also used implementations of SDP method of

Singh et al.24 downloaded from \http://www.biostat.wisc.edu/�vsingh/". It worked

for Iris, Wine and Glass datasets; however, it had some errors when it was run for the

other four test cases including Halfrings, Ionosphere, SAHeart and Breast. The

reached accuracy and FSOF results are shown in Tables 2 and 3, respectively.

As has been inferred from Table 2, overall, the accuracy of FSCEOGA is the best

among the accuracies of di®erent clustering algorithms. However, the other methods

may outperform the FSCEOGA in some of the datasets. For example, in the Breast

dataset the EAC method is the best. Moreover, the hierarchical SL, a rather old

clustering algorithm outperforms all other methods considering the Halfrings data-

set. These cases may be observed because of some reasons. One of the most important

reasons is that we have used only k-means as our base algorithm. On account of

k-means ¯nds only spherical clusters well and has serious problems with the non-

globular shapes, the combinational results of k-means-generated ensemble may be

a®ected with the non-globular-shaped datasets. On the other hand, hierarchical

methods like SL which are excellent in solving the problems with continuous clusters,

outperforms even the k-means-generated ensemble methods in such cases. Since the

Halfrings benchmark has two separate continuous clusters, it is a digestible case for

SL. This is the motivation that all studies in this ¯eld should compare the methods,

by referring to a set of benchmarks instead of one or two datasets. Consequently,

without loss of generality, the combinational methods like ours can compensate this

downside by using a range of di®erent base algorithms and other diversity enforcing

methods. FSCEOGA outperforms all methods in terms of averaged accuracy among

all case studies. However, FSCEOGA usually reaches better accuracy when it uses

Cross Twop() as the crossover operator instead of Cross Clust().

The summary of the results obtained by employing di®erent clustering algorithms

is presented in terms of FSOF in Table 3.

As concluded from Table 3, overall, FSOF of FSCEOGA is the best among

the di®erent clustering algorithms. The only closed competitor is MCLA method.

Table 3. The summary of the FSOFs obtained by employing di®erent clustering algorithms. The best results

obtained by di®erent methods over each data set are highlighted in bold.

Ens. Members Single Ensemble Methods

FSOF FSCEOGA1 FSCEOGA2 Best Average SL FCM EAC HGPA MCLA CSPA SDP

Iris 9.11 9.09 10.10 15.34 28.00 15.10 13.77 31.14 8.59 10.24 10.37

Wine 16.70 1.58 15.68 20.07 36.59 22.44 28.10 32.66 18.77 17.58 28.27

Glass 68.35 71.48 70.38 90.57 166.23 78.77 134.44 123.91 98.17 129.57 125.23

Halfrings 5.43 5.31 4.65 6.30 31.40 12.41 7.39 33.86 5.85 5.86 —

Ionosphere 10.40 10.36 10.34 14.21 22.45 24.64 32.44 33.33 9.90 11.40 —

SAHeart 7.17 7.17 7.24 9.84 33.27 27.78 40.68 33.51 7.43 6.77 —

Breast 1.58 1.59 1.58 2.41 26.62 24.58 1.66 35.75 1.07 13.21 —

Average of all

datasets

16.96 15.23 17.14 22.68 49.22 29.39 36.93 46.31 21.40 27.80 —
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It shows that MCLA consensus function has an objective that is conceptually closed

to FSOF. Consequently, FSCEOGA outperforms the other methods in terms of the

averaged FSOF over all datasets. It is worthy to mention that in Tables 2 and 3 we

have ignored the column Best due to its unavailability, that is, it is impractical to

Iterations 

FS
O

F 

(a)

Iterations 

FS
O

F 

(b)

Fig. 5. The convergence of FSOF in the FSCEOGA when using (a) Cross Twop() as the crossover

operator over the Wine dataset; (b) over the Breast dataset; (c) Cross Clus() as the crossover operator

over the Wine dataset; (d) over the Breast dataset (color online).
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reach a method like Best. It is also worth mentioning that the Best column is

reported only for comparing the best solution in the ensemble with the consensus

solution.

Although FSCEOGA reaches better accuracy when it uses Cross Twop() as the

crossover operator (see Table 2), employing Cross Clust() as the crossover function

Iterations 

FS
O

F 

(c)

Iterations 

FS
O

F 

(d)

Fig. 5. (Continued )
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yields the FSCEOGA to touch FSOF in a lower degree (refer to Table 3). To show

how deep the modi¯ed genetic algorithm operators a®ect the quality of the ¯nal

solution, see Fig. 5. The method rapidly decreases the ¯tness function in the initial

500 generations to a great extent. This is a con¯rmation that the crossover operator

is performing well. After dramatically reducing the ¯tness function in the initial 500

generations, the ¯tness function gradually stabilizes. Although it is still reduced in

each successive generation, the amount of decrement is much lower than the ¯rst 500

generations. It is due to the convergence of the population in the genetic algorithm

structurally. As you can observe, the ¯tness function reduces for a while after the

convergence of the population. It means that the proposed mutation operator is

capable of well exploiting the locality found by the population.

Therefore, the experimental results con¯rm the ability of modi¯ed genetic algo-

rithm operators in handling the exploring/exploiting dilemma. While the crossover

operator can help the modi¯ed genetic algorithm to explore the big search space

overall and also to ¯nd the near-optimal localities, the mutation operator can help it

¯nd the best solution in any locality.

6. Conclusion and Future Work

In this paper, we have rede¯ned the cluster ensemble problem and introduced an

innovative fuzzy string representation of the cluster ensemble problem. In other

words, the proposed formulation of the problem uses a string representation to

encode information of the ensemble of primary results. The suggested formulation

employs fuzzy logic to de¯ne a fuzzy objective function. Each candidate consensus

partitioning (each candidate solution of the model) also uses a membership degree

indicating how much data point belongs to each cluster. Finally, we have put the

new formulation into a mathematical optimization model with some constraints.

Although each nonlinear solver can be used to solve the model, the easy-to-

understand as well as e®ective-in-exploration characteristics of genetic algorithm

persuaded us to employ it as the optimizer. We have supported the genetic algorithm

solver by well-suitable-to-the-problem crossover and mutation operators. The

FSCEOGA has been examined on seven di®erent datasets. The experimental results

con¯rm the ability of modi¯ed genetic algorithm operators in handling the explor-

ing/exploiting dilemma. While the crossover operator can help the modi¯ed genetic

algorithm to explore the big search space overall and also to ¯nd the near optimal

localities, the mutation operator can help the modi¯ed genetic algorithm ¯nd the

best solution in any locality.

It is necessary to stress that we have opted for the genetic algorithm as the ¯rst

choice for model solving only due to its great qualities; however, it is not a guarantee

that it is the best one for this problem. In our future work we plan to investigate the

use of the other solvers for our proposed model. This may include both mathematical

and evolutionary solvers.
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